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Applying the doublet representation we analyze the solutions of a Hamiltonian
system which has eigenstates with complex eigenvalues. The example of the
Friedrichs model allows us to show how the appearance of solutions with non-
Hilbert initial conditions is linked to the energy degeneration of the Hamiltonian
spectrum. We discuss the difficulties of giving a physical meaning to the growing
or decaying non-Hilbert solutions. We also suggest a way to circumvent the prob-
lem of the anomalous probabilities related to both complex energy eigenvalues and
degeneration of the spectrum. €998 American Institute of Physics.
[S0022-24888)02307-X

I. INTRODUCTION

The doublet representatibmffers a useful way to study the dynamical evolution of both
Hilbert and non-Hilbert solutions of a Hamiltonian system. In the scheme of this formalism any
physical system is represented, not only by its wave functigas but also by a partnep* ().

These two functions allow us to construct an invariant scalar that, in case of Hilbert states,
becomes the probability of the appearance of the corresponding state. For non-Hilbert solutions,
the product of the wave function and its partner remains an invariant scalar, but its probabilistic
interpretation is under discussion. Precisely in this work we apply the doublet representation to
show the difficulties of giving a physical interpretation to non-Hilbert solutions and we analyze the
relation between energy degeneration and the appearance of complex eigenvalues. The explicit
computations performed in the frame of the Friedrichs model allow us to study the conditions that
the interaction Hamiltonian must satisfy to keep the spectrum in the real domain. In the other case
we show how to circumvent the problem of badly behaved probabilities by means of defining a
“reduced” space that solves the degeneration problem.

The paper is organized as follows: in Sec. Il we make a brief review of Ref. 1. In Sec. Il we
analyze which initial conditions correspond to states in Hilbert spatand which ones corre-
spond to non-Hilbert states. Section IV is devoted to the study of the anomalous behavior of
probabilities and mean values for non-Hilbert states. The conditions that the interaction must
satisfy in order to obtain a real spectrum are studied in Sec. V. In Sec. VI we find a basis of the
reduced space where the energy degeneration is removed. Finally, in Sec. VII we draw our main
conclusions.

II. THE DOUBLET REPRESENTATION

Hamiltonian equations have, in general, well-defined continuous solug@nsthat may or
may not belong to7Z. But in both cases it is possible to define a “partner” of the wave function,
namely ¢*(w), that is not necessarily the complex conjugategtd).! Then, solutions of the
Hamiltonian equations will be represented by the “double#, ¢*). In the particular case where
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¢ e ., solutions satisfyp™= ¢*, where¢* is the complex conjugate af. In Ref. 1 we have
applied this formalism to study the Friedrichs Hamiltonian and we have obtained that the field
equations in the doublet representation read as

woort) [ g(w)e(w)do=ig,, &
0e(@)FAg(@) ¢1=15(w), @
wogi 1 | "6t (w)do= i1, ®
g (@) +1g(0)9}=—1" (@), @

wheregq,¢],¢(w),¢*(w) are the wave functions of the doublet representatiba first two for
the discrete mode\ € i is the coupling constanty, ™ is the discrete eigenvalue of the free
Hamiltonian, 0= w << is the continuous spectrum, agdw) =g* (w) stands for the interaction
function.

We demand that wave functions satisfy the following natural conditions:

¢1<Pi+fm¢(w)<p*(w)dw<0°, (5
0
(e1)*=¢1, [¢"(@)]"=0(w). (6)
With these conditions, the solution to systéim—(4) is
Y [PN@)
QDl(t)_ m @€ ' JO m (P(U))e tdwa (7)
* — 1 ~*x  tiz ” )\g(‘a’)) ~ ok~ AFiot4
‘Pl(t)_m ()Dle Ot+ fo CY(Z)) ® (Q))e tdwl (8)

1 Ag(e)

plo,t)= m Zo—w p1€

1 )\g(w) ~* Atizpt

o0 2 )
\ g(“’)g(‘”)) H(@)e dm,  (9)

—iZot+~ e—iwt+
elw) 0 (B-w)a(®

» N2g(0)g(@) -

N i T w AT @ e ¢ (@
(10
where
o 2 )
ZO()\)=w0+)\2JO —(ZO%)\()“’_Q)) do, (11)
o N2
a(2)=wo—2z—\? %dw, (12

a'=daldz, and(¢1,¢(®@)), (¢1,¢*(@)) are the eigenfunctions of the free plus the interaction
Hamiltonians. The singularities ifi(®) and @— )~ * must be avoided making the shiftie.
We do not write it explicitly in order not to complicate the notation. A main characteristic of the
solutions(7)—(10) is that they behave in a continuous way when the coupling constgoes to
zero.

When (¢4, ¢(w)) belongs ta7, we have
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Pi=¢7 and ¢*(w)=¢* (o).
In this particular case, Ed5) implies that

0<pipi=<1,

OSJ 2(p(w)go*(w)dw$l.

@1

If [w1,w,] is any nonempty interval, the last integral corresponds to a well-defined probability.

[lI. NON-HILBERT INITIAL CONDITIONS

From Egs.(7)—(10) we can see thap* equalse* whenz,efR. In this case, the solutions
belong to.7Z. But as we can obtain Hilbert solutions, even for those Hamiltonians that have
complex eigenvalues, we are now interested in determining, for norgeathich initial condi-
tions correspond to those states.

Initial conditions in.7Z imply that ¢j(t=0)=¢7(t=0) and ¢*(w,t=0)=¢*(w,t=0).
When analyzing the solution&)—(10) to the equations of motion, we see that this relation of
conjugation holds true for any time value if the first terms of the rh&)r(10) cancel with the
corresponding residue evaluatedzf It is easy to see that these four conditions reduce to the

following two:
2mi R :{)‘g(“’)‘ 20| = - —— 7 (13)
™ R 2w AT o o
N(w) ~. 1 -
27 Re (@) 0" (w),zo|=— (20 @7 (14

An illustrative example with initial conditions iz that satisfy(13) and (14) is the general
state whose initial conditions coincide with the discrete eigenstate of the free Hamiltdgian

01(t=0)=¢](t=0)=1, ¢(w,t=0)=¢*(w,t=0)=0,

and evolve with the complete Hamiltonidh. Indeed, performing the change of ba&i$—(10),
we obtain that

()= NI
P a(w)
and replacing it in Eq(13), we see that
- [ng(o) - o INGP(D) L
2 Re{ (@) o(w),zo|=2mi Rez{az—@,Z—zo
—omi Red— = 3-
=27l Re Ea—(z),z—zo
1 1

(19

== a’'(20) = \/TZO) 1,
which is precisely that condition. This is also true for conditi@d). Here we have used
@ (0)—a_(0)=—27iI\g%(w).
On the other hand, one state whose initial values satisfy neither condit®mor condition

(14) is, for example, the discrete eigenstate of the Hamiltonian,
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¢1=¢1=1 and ¢(w)=¢"(0)=0,

that it is obviously out of 7.

Finally, we note that there are initial conditions which satisfy eifd&® or (14) but not both,
and other ones which satisfy neither, but are not eigenstates blevertheless, all of them obey
the “normalization” condition(5).

IV. PROBABILITY BEHAVIOR OUT OF HILBERT

To characterize the physical behavior of nafistates, we should not consider the temporal
evolution of the wave functions only, since each one alone does not provide information either
about transition probabilities or about the mean values. For example, the discrete eigenstate
(¢1,97) whose components evolve with 7ot ande'?o!, respectively, must not be interpreted as
two decaying and growing states, because, in spite of the fact that they seem to be so, they are one
single stationary state satisfying

e1(D@1(1)=1(0)1(0)=1,
¢(@,0) 0" (®,1)=¢(®,00¢"(®,0 =0,

as it may be seen from Eq&7)—(10).

Nevertheless, when evaluating probabilities for a general non-Hilbert state, including station-
ary ones, we see that—even though total “probability” is normalized to Usiée Eq.(5)]—the
partial probability of finding the state in a bounded interval of energy may be out of the interval
[0,1] or be a complex number. To investigate the nature of this problem let us consider an
example. From Eqg7)—(10), the “probability” of being in the discrete eigenstate ldfis

L1
(Pl(plzyv (16)

and the “probability density” of finding the system with continuous enedgis

1 )\2 2
)9 (0)= 2 an

Expanding the probability of finding the system in the discrete state up to the second order in the
interaction constarX, we find

2

* g(w)

1=1- )\Zf ——— do, 18
P1P1 0 (wo—w)2 w (18
whereas for the probability density of finding it with a continuous enesgye obtain

0%(w)

¢(w)p*(w)=\? (wo—w)?" (19

So in this approximation we have

1071+ fo P(w)e*(w)do=1.

We want to point out some features from the previous expressions

(1) Probability densities obey the condition expresse¢bjn

(2) The probability density¥19) has a pole iw= wq.

(3) This pole produces complex “probabilities” in general and the “probability density” may be
complex or greater than unity in its neighborhood.
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Statementgl), (2), and(3) show us the nature of the problem and suggest a way to circum-
vent it. In fact, when we findvy as the result of a measurement of the energy of the system, we
do not know whether the corresponding state is the discrete eigenvector, the continuous vector
with the same eigenvalue, or a linear combination of both. Then, it seems that we are not allowed
to treat them as separated states assigning different probabilities to them because we cannot
distinguish these states through energy measurements. But if we compute the probability to obtain
wq as the probability of the system to be in the discrete state plus the probability of the system to
be in the continuum in a neighborhood f,, the problem gets solved by itself because the
infinite terms involvingw, cancel each other in the? approximation, i.e.,

- R wpt+A R
!ﬂwo_A,wo"‘A]:%(Pl"‘J' A ¢(wo) 9™ (wg)dw
ll)07
[T S
0 (wo—w)2 wptA (wo—w)2 ,

does not have the problems mentioned in the above staterf@raad (3).

Nevertheless, this is only a second-order solution. It can be seen after a straightforward
computation that in the next step of the expandifmurth-ordey complex contributions reappear
from each term of the probability densities and do not cancel each other. This is so because, as we
will see, this is not the right way to solve the problem.

Due to the bad behavior of probabilities out.@f, we have studied the behavior of another
meaningful magnitude: the mean value. In the frame of the doublet representation we can gener-
alize the expression of the free Hamiltonian mean value in any state as

(Ho(1)) = wopa(D (1) + f:ww,t)@*(w,t)dw

= wy

1 - ) * Ng(w) _ -
0 +

. 1 ~*e+i20t+Jm )\g(z{)) ~ x
Ja'(zg) TF 0 a (@)
1 Agle).
[ e e et
0
X fm @) ) P(@)e e+ (w)e !

0 ai(v)(o-w

0

(a)e“?utdz)]

1 N(o) -, ..
X|—— preti%t4)\?
\m Zo_w ¢1 g(w)

xf Lw)2,‘0*(5))e+iz’tdz:)Jrzp*(w)e“wt wdo,

0 a_(v)(o-w)

whose instabilities come from the real contributions of exponeng&al®!'. That is to say, the
mean value has oscillating terrhich correspond to real frequencieg and growing or decay-

ing waves coming from the imaginary contribution of the “frequenag’ These instabilities do

not cause problems to Hilbert states because they satisfy conditi8nand(14), so the complex
exponentials cancel each other and do not produce vanishing or indefinitely growing terms. On the
other hand, non# states will have anomalous terms in the mean values of the Hamiltonian which
diverge for growing time values, except when they are eigenstatels &0 here we also have a
problem for the mean values evaluated in néhstates.
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In conclusion, we point out that, in spite of the fact that it is possible to find the dynamical
evolution for any doublet, it is difficult to assign probabilities or mean values to give physical
meaning to them. In the next section we show that this problem is linked to the fact that the
probability of measuring energy, has contributions coming from the discrete state plus contri-
butions from any interval around,, belonging to the continuum.

V. INTERACTIONS THAT GENERATE REAL z,

In the previous sections we have identified the appearance of anomalous probabilitizg with
being a nonreal number. Now we will show that the problems created by this complex quantity
arise from the fact that the improper integrals arousglyield a complex eigenvalue of the
complete Hamiltonian. To show the explicit limit between complex and real eigenvalues, we make
use of the solution&7)—(10) which are continuous iR (see Ref. L Thus, we can suppose that
in expression(11) can be expanded as a power seriea,afaking zy|,— o= wq,

0 2 s 2 o 2 ’
Zozwoﬂzf de_éﬂf 9w f g()

) Tor—w) 407 3 sdo’'+ . (20)

w VY
0 (wo—w) 0 (wo—w’)
As we can see, improper integrals appear in the expansiog & generic coefficient in the series
always contains a factor like

0%(w)

(wo—w)”’

implying the appearance of poles in the function under integration which—when computed in the
complex plane—give imaginary contributionszg. These divergences point out the influence of
the degeneration in the free Hamiltonian spectrum: when the eigenstate that corresponds to the
discrete eigenvalue of the free Hamiltonian interacts with the eigenstate of the continuum with
energyw, and its neighborhood, complex eigenvalues of the complete Hamiltonian appear. As it
has been shown in Ref. 2, the reality of the discrete eigenwglirerelated tog(w) evaluated in
the eigenvalue.

Expression20) tells us that, if we confine ourselves to the second-order expargidsyeal
wheng(wp)=0. This is in accordance with well-known results that establish that

g(wo) = 0=T?= 777\292((1)0) =0,

whereT'(?) is the second order iR contribution to half the inverse of time lif&> But this is not
true for higher orders in tha expansion because the conditigh(wy)=0 is not sufficient to
guarantee that the whole integral be nondivergent.

From the previous results, we conclude that the conditiondba) must satisfy in order to
obtain a real spectrum is

- GA(w) o
)!IE"IO (ZO()\)——(,O)H<OO’ Yne.J, (21)

for any w belonging to an interval that contaiag, because, when performing the expangi?d),
condition (21) guarantees the reality of the expansion. This is equivalent to requesting that

lim z(\)=wq
A—0

does not belong to the support gfw).

A trivial example of interaction satisfying?21) is the Ohmic interactiorg(w)=w with a
cutoff that leavesoy out of the integration interval. In fact, any interaction that vanishes over a
finite interval aroundwg is a trivial example.

A nontrivial interaction satisfying21) is
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explwo— ) L, if wg<w;
g(w)=1 0, if wo=w; (22)
exp—(wo—w)fl, if we>w,

which removes, in a continuous way, the interaction between the degenerate states of the free
Hamiltonian.

For interactions satisfying conditiof21), the spectrum of the complete Hamiltonian is real,
no pathologies appear in the evaluation of probabilities, and the whole problem can be formulated
in Hilbert space with no need of enlarging the state space to the doublet one in order to diagonalize
H.

VI. A REDUCED SPACE

In general cases in whidj)(w) does not satisfy conditio21) andz, is not necessarily a real
number, we may remove the degeneration that causes anomalous probabilities defining a new
basis with the following procedur@vhich we will develop in Dirac notation because it is clearer
in this case

To exclude the continuous eigenvalwg from the continuous spectruithus removing the
degenerationwe define the set

Z={wll<w<wg—a or wptaswo}, (23

with ae iR, a>0. Next, we define the orthogonal basis:

|A>=A1|1>+fwoj:x(w>|w>dwe-% (24
{logt={lo)we 7}, (25

where the basis vectors satisfy

<A|A>=A1A’1‘+Jw0+aA(w)A*(w)dw=1,

wp—a

(26)
(o ]AY={(A|lw,)=0 and (w/|w/)=8w,—o).
In this basis the matrix elements bif are
wpta
AN =00A AT +A [ G AL A )+ 1A% (o) Tdo
wp—a
wpta
+f oA(0)A* (w)do=A(N), (27)
wp—a
(0/|H|0,)=0,8(w, — o), (29
(or[H[A)=NA19(wy). (29)
With them, we can define the Hamiltoni&h which acts on the “reduced” space as
H=AOIAYAL+ [ olo)oldo+ [ xg@lAdA)ol+ATlo)(Aldo. (30

Diagonalizingﬁ, we obtain that its discrete eigenvalue satisfies the following recursive
equation:
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AT g¥(w
197 )dw

X(A)on\)HZL Ao—w)

(31

Taking into account the results of Sec. V, we have fkl@t) will be real (and the probability
well defined if lim,_,o A(\) does not belong to the support gfw), i.e., if

lim A(\)=lim A()\)Iwo-l—fwoja(w—wo)/\(w)/\*(w)dw (32)

A—0 A—0 @Q

does not belong to the continuous §et} [we have used the normalization conditi@®)]. As the
function under integration i632) is small enough neabg, it will be always possible to define
some real numbea nearw to satisfy

wo—aSA()\=0)Sw0+ a.

Then, we conclude tha#l has a real spectrum, the wave functions belongZpand the prob-
abilities are well defined in the reduced space spanned by the (B45i<25).

We also notice that the reality df(\) in (31) is guaranteed from a sufficiently small value of
(wg—a) and it remains in th@—0 limit. In this case

lim A=W, e R,

a—0

and the spectrum remains nondegenerated because the contingareergy value has been
removed from the continuous spectrum. So, the eigenfunction which evolves witlzggxpé-
comes the Hilbert eigenfunction which evolves with e¥t) defined in the reduced space.

VII. CONCLUSIONS

We have shown that the states which do not satisfy conditib8sand(14) do not belong to
7. S0, even though we can predict their temporal evolution, it is impossible to define either
well-behaved probabilities or nondivergent mean values for them. Non-Hilbert states are useful to
describe the dynamical evolution of physical wave functions, but they cannot be considered as
having the same physical nature as those of Hilbert sftheesame as plane waves do not have
the same physical nature as ordinary Hilbert sates

Taking into account that the existence of non-Hilbert states is linked to the appearance of
nonreal eigenvalues and that these eigenvalues are related to the degeneration of the Hamiltonian
spectrum, we have shown how to solve the problem. To do so we define a reduced basis that
generates wave functions which represent states with well-defined probabilities and mean values.
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