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structure of the manifold. Conservation of this quantity is linked to observers. Integrating
over timelike surfaces, we define the Hamiltonian and momentum of the system which
incide with the esponding standard ADM definitions when taking adequate asymp-
tothcal conditions. We define an Equivalence Principle for manifolds with torsion a8 &
possible sion of the Equival Principle of General Relativity to nos-Riemannian
geometries.

1. Introduction

If we want to extend The Equivalence Principle of General Relativity (GR) to
senaalmaﬂcmnifolds(ekuallywithmon).itiamwsmdythe
local behavior of energy and momentum and introduce local systems of reference
that wiﬂphythmleofﬁeefaﬂln;obmwn.Soweneedwinuuhuthmlon
of observers in arbitrary curved space-time. Their trajectories will be the result
of a generic diffeornorphism over the given manifold. In principle, observers may
follow any trajectories, not necessarily free falling ones. As in Minkowski space-time
where we can deal with inertial or noninertial observers — e.g. Rindler observers —
in curved space-time we can deal with geodesic or general and arbitrary non-
gwddcmwthﬁwﬂﬁuom,wﬁmtmﬁube
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locally conserved. We show that these conditions are satisfied if the Lie deriva-
tive of the tetrads, defining the free falling systems, locally vanish. Nevertheless,
this condition does not imply the local annihilation of the whole non-Riemannian
connection.

For our treatment, we need to introduce a definition of esergy and momentum
applicable to manifolds with torsion. We discuss this point briefly.

In Classical Mechanics as well as in Special Relativity (SR), energy and
momentum can be well defined because the manifolds where these theories are
formulated admit global symmetries: invariances under Galileo and global Poincaré
transformations respectively. This is not the case of curved manifolds where global
space-time symmetry is a meaningless concept. Energy and momentum in general,
curved space-time are directly related to the local Poincaré group. This group plays
the role of the global Poincaré group in flat space-time manifolds and it is its natural
extension.! But in general, in addition to local symmetry, some geometrical restric-
tions should be imposed: for example, conserved quantities are introduced imposing
asymptotically flat spaces®3 or constant curvature,*® It is also passible to obtain a
covariant Hamiltonian including a covariant expression for the conserved quantities
of an asymptotically flat or constant curvature space.® More recently, in Ref. 7, it
has been shown that 1n order to define energy, the same surfece term may be used
in both, the Hamiltonian and the action.

Another way to define energy and momentum is to generalize the notion of
energy-momentum tensor from SR to curved space-time replacing ordinary deriva-
tives by covariant derivatives in its definition (minimal couplirg in the Lagrangian).
Then the local concept of energy-momentum density in curve space-time is trans-
formed into a global definition of energy and momentum integrating over timelike
hypersurfaces of the space-time manifold. But when this pracedure is applied to
theories with torsion, a problem appears: flatness with torsior does not correspond
to Minkowski space-time; namely we do not have an acceptable generalization of
energy from SR to flat theories with torsion, neither a criterion to determine whether
the Equivalence Principle implies the full annihilation of the connection or, for
example, only its symmetric Christoffel term. Torsion is important when dealing
with more degrees of freedom than in GR, like Einstein-Cartan-Sciama-Kibble
(ECSK) theory,! and when supersymmetries are required like in Supergravity and
Superstring theories (N = 1 Supergravity is the low energy limit of Superstrings®).
Supersymmetry also provides a reasonable explanation of some relevant cosmo-
logical features,”

Besides all the above considerations, an additional fact must be taken into
account: even in Classical Mechanics, energy and momentum depend not only on the
geometrical structure of the theory but also on the reference system in which these
quantities are measured. An illustrative example is the case of accelerated observers
in Minkowski space-time. In the scheme of Field Theory, we bave shown that these
kinds of observers will measure particle creation, depending on the parameters that
characterize their acceleration’® and also on the topological siructure, !
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With respect to the Equivalence Principle, we must note that, due to the anni-
hilation of the gravitational “force” in free falling systems, the corresponding local
gravitational energy and momentum densities must be also null. We should point
out that when dealing with quantum mechanical states, not all freely falling frames
are physically equivalent; this fact violates Local Position Invariance.'? For example,
in the case of a linear superposition of eigenstates with different masses (weak-flavor
eigenstates of neutrinos), observable gravitational relative phases are induced as
the redshift of a flavor oscillation clock; ie. relative phases do not vanish along
equipotential lines, even if the gravitational force does.!* This effect, which is due
to gravitation, does not vanish in free falling frames. Anyway, we will deal only
with classical phenomena and work with classical matter in free falling systems
satisfying certain local holomicity properties; later on, we discuss the corresponding
trajectories, a classical concept (nonquantum) itself.

On the other hand, as it was shown in Ref. 7, the definition of total gravitational
energy depends on asymptotic boundary conditions through surface terms. So we
must use an approach that guarantees the local annihilation of the gravitational
energy—momentum for any selection of the surface terms to be imposed.

Taking into account that the Lie derivative infinitesimal generators have the
same geometrical structure of the Hamiltonian and the momentum and that those
generators reduce to them in the special case of Minkowskian space-time, we will
define energy-momentum via the introduction of a pseudovector related to the
generators of the Lie derivatives. All this suggests that the concept of diffeo-
morphism is a very important tool in order to characterize physically conserved
magnitudes in curved space-time. In fact, the Noether charge, defined for any diffeo-
morphic invariant Lagrangian, is used not only to define energy and momentum of
physical systems, but to compute different kinds of physical magnitudes like the
entropy of a black hole.'* All this enables us to consider the Lie generators in tem-
poral or spatial directions as the Hamiltonian and the momentum, respectively, not
only for fiat manifolds but also for any general metric theory.

We compare our results with those arising from other definitions of the Hamil-
tonian and momentum like the one corresponding to the ADM formalism and
the usual definition of semiclassical theories used to define vacuum states. As the
generators that we obtain are independent of the affine structure, we find that our
energy and momentum definitions are independent of the connection of the man-
ifold. Then, our results are valid in space-time with any connection, either with
torsion or without torsion. Following these results, we are able to define an Equiva-
lence Principle for non-Riemannian geometries that avoids known ambiguities and
determines the characteristics of the dynamics of free falling particles.

The paper is organized as follows. In Sec. 2 the generators of the Lie derivative
of the physical fields are found and surface terms are studied. In Sec. 3 the Lie
generators are used to define an energy-momentum pseudovector density. In Sec. 4
the energy—momentum density pseudovector and the energy-momentum tensor are
linked. In Sec. 5 we discuss the relation between reference systems and conserved
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quantities. Finally, in Sec. 6 we make a generalization of the Equivalence Principle
from General Relativity (GR) to non-Riemannian manifolds.

2. Infinitesimal Generators of Diffeomorphism in Generzl Manifolds
We suppose that the total action of the physical system is defined over a generic
manifold assuming that the Lagrangian density contains only the first derivatives of
the physical fields and eventually a position dependence. Superior order derivatives
only may appear through a total divergence of a vectorial functon F*. Then, in
general, we have

Wise" 8,02, 0,0,6:°) = [ 2r(6.%.0,0.7 0,0,0.5's
- [ 2@ a0

+ / B, F* (6,2, 8,9.%)d’z , (2.1)
ze

where Z* C U*, with U the total manifold, d*x the elementary four-volume in U*
and ¢,* represents fields a with spin “a".

Now we take a family of one-parameter A curves €(A) with components X*#()\),
A € R, and the corresponding tangent vector field u*(z)

uh(z) = 08% (A). (2:2)
We define a generic diffeomorphism for the points of the manifold
¥ = ¥ - ut(z)AN = * (2.3)
and the respective induced transformation over the fields:
6a”(z) = ¢'a"(z'), (2.4)

where ¢/,*(z") is the fleld ¢,*(z) transformed by diffeomorphism from the point z
to the point 2.
These transformations change the action W into W’ = W + AW and allows us
to define the operation
. AW sW
DW= tme 2> = [ 50

+ /z .o,.( o P . C.t.‘)d'z. @5)

Lydodz + Plu, £, 2.7

wuac¢a‘ ao;océo.
where AW = W’[¢/,%] — W[@o?], the Lie derivative £, is
Loda(z) = Alir-'io W ; (2.6a)
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where ¢,%(z) is the result of the diffeomorphism over ¢o”(z) from 2’ to z, and
e oL B )
Plu, %27 = jp (—80,6." L£,0," = Zu* |dS,, (2.6b)

Mwmmtyﬁ,htmwmdaz‘.mdaz‘=Z°.A.||
the above computations are on shell: 2% = 0.

Now we consider the submanifold M® € U* and define an atlas (X*, X?) by
means of which M? is characterized by the condition X° = constant. As the metric
tensor has not been yet defined, X” does not mean a time coordinate.

It is possible to extend the notion of Poisson bracket from flat space to U* as
o w1 bl saE B A B
[A(¢a®;T1a"), B(¢a": 1o )|p =,/;: (WW—WW)":X
where @ X = dX'dX?dX? is a scalar density of order ~1; A and B functions
oftlwﬁus%‘andﬂa“withn.‘sR&q.\\’iihﬂﬂ&dﬂﬁﬂi%&ih%@

brackets between quantity P (see (2.6b) and fields ¢ and II, are

[6a®;Plpn = Luba®, (2.88)
(Ma%;Ples = Lulla®. (2.8b)

We conclude that the quantity, P, is nothing but the infinitesimal generator of
the Lie derivative. As no metric tensor was used up to now, it is not possible yet
to define the Hamiltonian and the momentum generators.

. (27)

3. Energy-Momentum Density Pseudovector

We want to interpret the infinitesimal generators as the Hamiltonian and the
momentum of the system. We introduce the notion of space and time via the metric
tensor g, with signature (—1,1,1,1), and consider the curve ¥(A), its tangent
vector e(z), with z € C(A), and the orthogonal hypersurface M? to e(x) at the
poilxt?().)=zo.Hc(z)'ntimelih,ncansupposethat'f(k)isthetn,bﬁayo(
some observer. A generic “time” corresponding to this observer, can be defined as
any real, continuous and increasing function of the proper time defined over ¥(A).
The local set of events that can be considered by this observer as simultaneous, are
the points that belong to M? in the neighborhood of zo.

Let us consider a set of curves ¥'(A). The corresponding tangent vectors are now
a vectorial field e(z). If it is possible to define the family of timelike hypersurfaces
M? orthogonal to the field e(z), with x € M3, then we are able to define a fluid
of observers with velocity e(x). Over these hypersurfaces we can define energy and
momentum of this system of observers. So using €- ey = 0, with ez any vector that
belongs to the tangent space to M?, the generators P

Ple, 2, M3 = X, (3.1)
Pler, £, M%) = P, (32)
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are the “Hamiltonian™ and the “momentum® of the physical system described by
the Lagrangian % measured in the reference system in which the observers have
four-velocity €(z). This is 50 because (3.1) and (3.2) are the infiritesimal generators
of the time displacement ¢(z) and the space displacement eriz) respectively. In
this sense, definition (3.1) and (3.2) are the natural extensicas of the concepts
of Hamiltonian and momentum from flat space-time to curved space-time. These
deﬁniﬁomdependonthemetrictensorviatheﬁmeﬁbndqhmﬁhemmc(z)
and er(z), but do not depend on the affine connection which is 2ot even defined. If
the Lagrangian does not have an explicit dependence on time, then, our Hamiltonian
can be considered the energy of the system.
Now, from (2.6b), we define the pseudovector

TH(u) = % Loda® — Lo, (3.3)

where »* is any vectorial field. No spin “information” will remasin since diffeomnor-
phisms only depend on spatial transformation from point r to point . If u = ¢,
then (g)~*/*T*(u) represents the energy density flux; if u = er, (g)~"/2T%(u) rep-
resents the momentum density flux. In both cases these quantities are measured
by observers (free falling or not) with four-velocity . We remark that T* repre-
sents energy or momentum density if vector u is timelike or spacelike respectively,
although the coordinate index “4" is a temporal or spatial index.
We note that if in the reference system {X*}, T* satisfies
AT =0 (3.4)

at any point of Z*. Then the generator P:
Piu,2,2%) = [ (921 as,
zs

is a conserved quantity.

If (3.4) is a local property, valid only at a specific £ = xg. thea quantity P is not
mwved.Am,them(alﬂuxofT”maclosaielenmaquumemmdning
p is zero."® For this reason this property can be called the “local energy -momentum
conservation.”

4. The Energy-Momentum Density Pseudovectors

lfwechoontbemhrcumtumutbegmvimbmlhgnqin.wemmw
the total action of the system W into Wy, and We, where Wy includes the free
action of the other fields ¢,* (matter fields, torsion) and the interaction between
matter-matter and matter-geometry, while W corresponds to the kinetic term of
the metric field g,... The total action becomes

Wigue: $a”] = War[guw, 9a°] + Wo g (4.2)
with Wy = I:..?ud‘t and Wg = fz..e‘rad‘z
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The total gravitational Lagrangian is
Pro=9"*R= %, +8,F", 4.2)

=" ({AHa}-{EHA))
mogn ({5} -{A))-

Some comments are in order. The Lagrangian #; of (4.2) comes from split-
ting the curvature tensor R(I") according to Ref. 16. We consider the gravitational
Lagrangian as the scalar curvature built up with the Christoffel symbols depending
only on the metric and its derivatives. This is a usual procedure when the action is &
linear functional of the scalar curvature field. In this case the nonmetric terms (like
torsion depending terms) of the connection, may be incorporated into the matter
action [Was in (4.1)]. The motivation to include the contributions of torsion terms
(and other non-Riemannian parts of the connection) in the matter Lagrangian, is
to represent gravitation only by the metric tensor field gy,.. This procedure is used,
for example, in ECSK theory' where the relation between torsion and matter is
algebraic via an equation which relates torsion with intrinsic angular momentum.
In the case of Supergravity the procedure of splitting the curvature tensor is also
used.!? For example, in Ref. 9 we coupled the non-Riemannian connection as a
part of cosmological matter. In the case of N = 1 Supergravity, there exist a super-
symmetry that transforms metric into gravitino ¢, while torsion S is related with
this last Seld via: Su.® = Y, Y*¥,. Here the incorporation of torsion in the matter
Lagrangian is, strictly speaking, merely a question of notation, because torsion and
metric transform one into the other via supersymmetries.

On the other hand, the addition or the subtraction of a total time derivative in
the Lagrangian or a total divergence in a Lagrangian density, leads to a new defini-
tion of the momentum and of the infinitesimal generators. As these transformations
do not change the dynamical equations, the new generators and momentums are
canonical transformations of the old ones. This is not the case of theories with
constraints. In fact, in these theories, a divergence cannot necessarily be discarded
since such a term may cease to be a divergence upon elimination of constraints. It
is only possible to subtract total derivatives in the Lagrangian if the constraints
are incorporated as suitable Lagrange multipliers. As was pointed in Ref. 18, this
is the case of GR. In that article it was shown that some of the field equations
can be considered as constraints caused by Lagrange multipliers. For this reason,
in GR the subtraction of total derivatives in the Lagrangian can be considered as
a canonical transformation of the action. For example, in Ref. 19 the total diver-
gence subtraction leads, precisely, to the Lagrangian (4.2). Another example of
subtraction of a divergence is shown in Ref. 20. This procedure can be extended

where
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to other gravitational theories that include the scalar curvature in the definition of
the gravitational action like ESCK (see Ref. 1, p. 400 and its appendix).

Now we return to the matter action. If Wy is invariant under diffeomorphisms,
then it must satisfy

DWWy =0, (4.3)

where D, is the operation defined in (2.5).
As a consequence of (4.3), we have that the tensor T*" defined as

= 1 0% vi a
T“":W;(WV ¢¢ —.?Mg'“') (4.4)
satisfies
2 W
T =~ 3 G o
and
VT = 0. (4.6)

Detinition (4.4) corresponds to the metric energy-momentumn Lensor, amd Vy is
the “covariant derivative” corresponding to a tensor of any rank built up with the
Christoffel symbols.

Using (3.3) and (4.4)-(4.6), and after a straightforward computation, we obtain
that the four-momentum density (see (3.3)) corresponding to the action Wiy is

Ty" = g"%e,T*, (47)

where Ty” is given by (3.3) if .Z is the matter Lagrangian #) and u is €. As
relation (4.7) was obtained without any reference to the affine structure, the result
is valid in any metric manifold. On the other hand, we note that if the manifold is
endowed with an arbitrary definition of parallel transport (metric or not, symmetric
or not), the results remain valid and the metric energy-momentum tensor built up
with a Christoffel connection, in general, is not the covariant version of the SR T
(i.e. ordinary derivatives replaced by covariant derivatives in Eq. (4.4).

At this point, it is interesting to compare our results with classical definitions of
the Hamiltonian and the momentum in curved space-time. In the ADM formalism,
the Hamiltonian is obtained in metric differential manifolds where it is possible to
define spatial surfaces Z? with coordinates z* (i = 1,2,3) labeled by a “temporal”
parameter t (3+ 1 formalism). The gravitational action is the Hilbert-Einstein one.
Under these conditions, using the definition of the surface term given in (4.2), and
taking into account the scalar structure of the Hilbert-Einstein action, in (2.5),
quantity

g 90, F" ., 00F )
P, 200+ [ (aa,.a,cs,- OoLut® ~ o gpgga Luta® JdSu  (48)
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is conserved and may be interpreted as the gravitational energy. Writing (4.8) in
terms of the metric tensor, we have

Eq= [ 09(6" 0 — 9P 0hp1)dS:, (49)

where dS, is the two-dimensional surface element at spatial infinity. In a linearized
theory with a flat background, last equation becomes:

Ec= f (hur — hog)dSs, (4.10)

where gy = My + g, with 77 the Minkowski metric; and we do not distinguish
between upper and lower indices on S;. Equation (4.10) coincides with the standard
ADM energy definition obtained for example in Ref. 21.

On the other hand, with the same procedure, we are able to obtain the ADM
Hamiltonian of the matter fields:

Ple, %3, 2% = /,, T%, (g)"2 . (411)

We remark that our procedure allows us to extend the validity of (4.9) and
(4.10) to generic non-Riemannian space-times.

We note that (4.7) not only establishes the relation between the four-momentum
peeudotensor density flux and the metric energy-momentum tensor, in fact, it is a
justification of the definition introduced in Ref. 22:

Hm= / T"€, dS, (4.12)
23
which is employed in semiclassical theories in order to define the vacuum state.
Finally, we would like to discuss how to compare our “Christoffel” definition of
energy with a “complete connection” definition of energy. From (4.12), we see that
in the reference system where € = (1,0,0,0), # is the energy E:
E=/T’dz,=/T*°dE.,, (4.13)
] b
where ¥ is a spatial hypersurface, T* is defined in (3.3) and T*? is the component
) of the energy-momentum tensor defined with respect to the Christoffel symbols
(4.4). An alternative approach could be
E'=/f'"°a>:., (4.14)
T
wlth;"‘thecumonunvooftheenety—mowmmmde&edﬁthmpect
to the complete connection:

B oy . Ly L
)
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The difference between these two definitions of energy depends on AT*? = T _
T*°. For the case of ESCK theory in Uy, AT*? could be obtained from Eqs. (3.8)
and (3.10) of Ref. 1 (p. 399).

Our reasons for choosing (4.13) instead of (4.14), will be explained in Sec. 6.

5. Global Conservations

Taking the covariant divergence defined through the Christoffel connection of
expression (4.7), we see that

8»(91/31‘”# )= T'wgu‘o =T"Legus (5.1)

which in general is different from zero. The fundamental role of the observers in
the definition of energy-momentum can be seen in one example in Minkowski
space-time. In this space-time, if ¢ is the tangent vector to the temporal global
Lorentzian coordinate, then the corresponding observers are inertial (nonacceler-
ated) observers. As in this case £.g,, = 0, both energy and momentum are globally
conserved. But if we consider general accelerated observers, the Lie derivative of
the metric tensor is, in general, different from zero, which implies that energy:

H= / T, dS, (5.2)
zs
and momentum:
P= / T*er, dS, (5.3)
zs

will not be conserved. But in flat space-time there is an interesting example for
which accelerated ohservers may define a conserved Hamiltonian. If we consider
Rindler coordinates:

ds® = e*(dg* — dn?), (5.4)

where £ and 7 are the spatial and temporal coordinates respectively, then Rindler
observers are those whose trajectories follow curves 7. We see that £,g,, = 0;
then for these observers, energy (5.2) defined on the hypersurface n = cte is con-
served. Nevertheless, as L¢g,. is not zero, momentum is not conserved. So we note
that even in flat space-time, conservation of energy and momentum depend on the
acceleration of the observers. At this point, we should note that in those curved
space-times, such as Robertson-Walker, where it would be possible to define Killing
temporal observers, we have the analogous situation (Lkg,, = 0 with k* the four-
velocity of the observers), and the Hamiltonian can be well defined. This is the case
for de Sitter and anti-de Sitter space treated for example in Ref. 4. In that article
the authors have defined the quantity T*“k,, as the Killing energy-density — k,
being a Killing vector — and found that [ T%k, d®z is a conserved energy. We
must note that in our approach, both the interpretation of quantity T%*k, as the
energy-density and its conservation, are natural consequences of our formalism.
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Principle and Local Conservation

section, we deal with more general space-times where global conditions
mecessarily fulfilled and focus our attention on local properties in order to
magnitudes that can be locally conserved.

nonsingular point xy of a Riemannian geometry we can define a local
free falling reference system by means of the tetrad é4(xo) (4, B,... =
€4 -€p = nap the Minkowski metric). The local annihilation of the con-
corresponding to this anholomic tetrad, can be called the local principle of

L:,é8(20) =0, orequivalently Lq,gu(zo) = 0. (6.1)

we consider the total energy-momentum pseudovector defined in (3.3). For
itati field, due to the second order derivatives in the Lagrangian, we
#dd to the energy-momentum pseudovector, the surface terms contributions.
the corresponding pseudovector is
0.7, Ho. F"
‘ = = _L —_— “ z
Trc*(u=éE4) T Ligvo — Lyea" + ,0ve

Lugus — 0: FTep™

a9, F* " 9. F”
+ maccugv‘ a, 30,0,9vs Lyugus (6.2)

Z, given by (4.1)); while the “matter” energy-momentum pseudovector

TaH(u=2¢Ea)= % Liyta® — Lren”. (6.3)
(4

the free-falling systems satisfying (6.1) the following quantities: Zas LoaGuv,
Gy F7 and 9, F7 are identically zero. Then in this reference system we have
the energy-momentum densities satisfy the following relations:

Ty (éa)(zo) = 0, (6.4a)
9,. (972 Ty*(4))(xa) = 0, (6.4b)
(g2 T0e(80)) (20) = 0. (6.4¢)

So we conclude that, in a Riemannian geometry, the energy-momentum flux of
gravitational and matter fields, and the gravitational energy-density, are locally
when they are measured in the free falling reference system.

But, if in analogy with the Ricmannian case, in a non-Riemannian geometry
demand the vanishing of local free falling tetrad connection (I'{, = 0) like in
23, we obtain, in general, that

V(0™ o) (20) £ 0 (6.5)
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and therefore conservation is lost. Of course this is not a desirable property of a free
falling system. In a Riemannian case, not only the affine connection can be taken
to be null but also local holonomicity is satisfied and this fact guarantees the local
energy-momentum conservation (6.4b) and (6.4c). But, in general, the vanishing
of the tetrad connection does not imply the vanishing of the Lie derivative of the
tetrad. In this case

IS5 =0 Layén = S(ép,éa), (6.6)

where S is the torsion.

Taking into account the above discussion, we propose another extension of the
Equivalence Principle to the non-Riemannian case: the local holonomicity property
(6.1). This property does not imply a locally null connection, but guarantees local
energy-momentum conservation. Then our Equivalence Principle will be related to
reference systems where

Ligéa=0 (6.7)

which now implies that the physical properties (6.4) are fulfilled. The properties
represent classical behaviors of matter; our Equivalence Principle, related to condi-
tion (6.7), has nothing to do with quantum effects as discussed in the introduction.
On the other hand, if we start from our Equivalence Principle version, we obtain,
after a straightforward computation, that trajectories of free falling particles are
geodesics:

9!
vV, u" =0, (6.8)

where u” is the tangent vector to the free falling trajectory. Conversely if trajectories
are geodeeic, the local energy-mowentwn fux is null. For example in a perfect
fluid without pressure with energy—density p and four-velocity u”, the energy—
momentum reads

T = putu” (6.9)
making zero the local energy-momentum flux:
0 (4} 0
Viu(9'*Tar*) = TV, u, = puPu*V,u, = 0 (6.10)

due to (6.8).

Instead, if free falling particles were related to the Equivalence Principle based
on a local vanishing of the connection I'S 5, they would follow autoparallel trajec-
tories:

WV, = 0. (6.11)

So, in our version, particles with conserved energy and momentum are those
which follow geodesics.
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7. Conclusions

Integrating (6.2), we are able to introduce a gravitational Hamiltonian that con-
duces, with adequate asymptotic conditions, to the standard definition of gravi-
tational energy. With our formalism we also justify the usual definition of matter
Hamiltonian (5.2) and momentum (5.3) in curved space-time. We extend these
definitions to manifolds with torsion which admit global foliation. In all these defi-
nitions, the role of observers appears explicitly via the vectorial parameter €.

The possibility of defining conserved Hamiltonians for accelerated observers in
flat space-times, can also be extended to semiclassical theories justifying the exis-
tence of Fock spaces with well-defined vacuum in both flat (Rindler) and curved
space-times with temporal Killing vectors. Then, particle creation can be linked to
the energy of the moving observers.®

Introduction of the energy-momentum pseudovector solves some ambiguities in
the definition of local energy-momentum. We use precisely this pseudovector in
order to introduce our extension of the Equivalence Principle to non-Riemannian
geometries, discussing the structure of the surface terms. We showed that this
principle predicts, for any case, geodesic motion for free falling particles. Then, any
deviation from geodesic trajectory can be attributed to nonconservative behavior.
This property can be applied to study physical phenomena like orbiting systems and
link accelerated observers with observable parameters such as orbital period and
energy decay. In a forthcoming paper, we will use our definition of the Equivalence
Principle in order to relate a nonconservative behavior of astrophysical systems
to non-Riemannian structures of space-time. This would be the case of strong
gravitational fields generated in a neighborhood of neutron or black holes, whose
entropy is the Noether charge corresponding to diffeomorphic transformation. 4
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